218 research outputs found

    Easily retrievable objects among the NEO population

    Get PDF
    Asteroids and comets are of strategic importance for science in an effort to understand the formation, evolution and composition of the Solar System. Near-Earth Objects (NEOs) are of particular interest because of their accessibility from Earth, but also because of their speculated wealth of material resources. The exploitation of these resources has long been discussed as a means to lower the cost of future space endeavours. In this paper, we consider the currently known NEO population and define a family of so-called Easily Retrievable Objects (EROs), objects that can be transported from accessible heliocentric orbits into the Earth’s neighbourhood at affordable costs. The asteroid retrieval transfers are sought from the continuum of low energy transfers enabled by the dynamics of invariant manifolds; specifically, the retrieval transfers target planar, vertical Lyapunov and halo orbit families associated with the collinear equilibrium points of the Sun-Earth Circular Restricted Three Body problem. The judicious use of these dynamical features provides the best opportunity to find extremely low energy Earth transfers for asteroid material. A catalogue of asteroid retrieval candidates is then presented. Despite the highly incomplete census of very small asteroids, the ERO catalogue can already be populated with 12 different objects retrievable with less than 500 m/s of Δv. Moreover, the approach proposed represents a robust search and ranking methodology for future retrieval candidates that can be automatically applied to the growing survey of NEOs

    The Poincaré problem, algebraic integrability and dicritical divisors

    Get PDF
    We solve the Poincaré problem for plane foliations with only one dicritical divisor. Moreover, in this case, we give a simple algorithm that decides whether a foliation has a rational first integral and computes it in the affirmative case. We also provide an algorithm to compute a rational first integral of prefixed genus g≠1 of any type of plane foliation F. When the number of dicritical divisors dic(F) is larger than 2, this algorithm depends on suitable families of invariant curves. When dic(F)=2, it proves that the degree of the rational first integral can be bounded only in terms of g , the degree of F and the local analytic type of the dicritical singularities of F.Supported by the Spain Ministry of Education MTM2012-36917-C03-03 and Univ. Jaume I P1-1B2012-04. The authors would like to thank the anonymous referee for his/her careful reading of the manuscript and for constructive suggestions that have improved it.Galindo Pastor, C.; Monserrat Delpalillo, FJ. (2014). The Poincaré problem, algebraic integrability and dicritical divisors. Journal of Differential Equations. 256(11):3614-3633. https://doi.org/10.1016/j.jde.2014.02.015S361436332561

    Generation of Induced Pluripotent Stem Cells from the Prairie Vole

    Get PDF
    The vast majority of animals mate more or less promiscuously. A few mammals, including humans, utilize more restrained mating strategies that entail a longer term affiliation with a single mating partner. Such pair bonding mating strategies have been resistant to genetic analysis because of a lack of suitable model organisms. Prairie voles are small mouse-like rodents that form enduring pair bonds in the wild as well as in the laboratory, and consequently they have been used widely to study social bonding behavior. The lack of targeted genetic approaches in this species however has restricted the study of the molecular and neural circuit basis of pair bonds. As a first step in rendering the prairie vole amenable to reverse genetics, we have generated induced pluripotent stem cell (IPSC) lines from prairie vole fibroblasts using retroviral transduction of reprogramming factors. These IPSC lines display the cellular and molecular hallmarks of IPSC cells from other organisms, including mice and humans. Moreover, the prairie vole IPSC lines have pluripotent differentiation potential since they can give rise to all three germ layers in tissue culture and in vivo. These IPSC lines can now be used to develop conditions that facilitate homologous recombination and eventually the generation of prairie voles bearing targeted genetic modifications to study the molecular and neural basis of pair bond formation

    Effects of Ocean Acidification on Learning in Coral Reef Fishes

    Get PDF
    Ocean acidification has the potential to cause dramatic changes in marine ecosystems. Larval damselfish exposed to concentrations of CO2 predicted to occur in the mid- to late-century show maladaptive responses to predator cues. However, there is considerable variation both within and between species in CO2 effects, whereby some individuals are unaffected at particular CO2 concentrations while others show maladaptive responses to predator odour. Our goal was to test whether learning via chemical or visual information would be impaired by ocean acidification and ultimately, whether learning can mitigate the effects of ocean acidification by restoring the appropriate responses of prey to predators. Using two highly efficient and widespread mechanisms for predator learning, we compared the behaviour of pre-settlement damselfish Pomacentrus amboinensis that were exposed to 440 µatm CO2 (current day levels) or 850 µatm CO2, a concentration predicted to occur in the ocean before the end of this century. We found that, regardless of the method of learning, damselfish exposed to elevated CO2 failed to learn to respond appropriately to a common predator, the dottyback, Pseudochromis fuscus. To determine whether the lack of response was due to a failure in learning or rather a short-term shift in trade-offs preventing the fish from displaying overt antipredator responses, we conditioned 440 or 700 µatm-CO2 fish to learn to recognize a dottyback as a predator using injured conspecific cues, as in Experiment 1. When tested one day post-conditioning, CO2 exposed fish failed to respond to predator odour. When tested 5 days post-conditioning, CO2 exposed fish still failed to show an antipredator response to the dottyback odour, despite the fact that both control and CO2-treated fish responded to a general risk cue (injured conspecific cues). These results indicate that exposure to CO2 may alter the cognitive ability of juvenile fish and render learning ineffective

    Yeast Screens Identify the RNA Polymerase II CTD and SPT5 as Relevant Targets of BRCA1 Interaction

    Get PDF
    BRCA1 has been implicated in numerous DNA repair pathways that maintain genome integrity, however the function responsible for its tumor suppressor activity in breast cancer remains obscure. To identify the most highly conserved of the many BRCA1 functions, we screened the evolutionarily distant eukaryote Saccharomyces cerevisiae for mutants that suppressed the G1 checkpoint arrest and lethality induced following heterologous BRCA1 expression. A genome-wide screen in the diploid deletion collection combined with a screen of ionizing radiation sensitive gene deletions identified mutants that permit growth in the presence of BRCA1. These genes delineate a metabolic mRNA pathway that temporally links transcription elongation (SPT4, SPT5, CTK1, DEF1) to nucleopore-mediated mRNA export (ASM4, MLP1, MLP2, NUP2, NUP53, NUP120, NUP133, NUP170, NUP188, POM34) and cytoplasmic mRNA decay at P-bodies (CCR4, DHH1). Strikingly, BRCA1 interacted with the phosphorylated RNA polymerase II (RNAPII) carboxy terminal domain (P-CTD), phosphorylated in the pattern specified by the CTDK-I kinase, to induce DEF1-dependent cleavage and accumulation of a RNAPII fragment containing the P-CTD. Significantly, breast cancer associated BRCT domain defects in BRCA1 that suppressed P-CTD cleavage and lethality in yeast also suppressed the physical interaction of BRCA1 with human SPT5 in breast epithelial cells, thus confirming SPT5 as a relevant target of BRCA1 interaction. Furthermore, enhanced P-CTD cleavage was observed in both yeast and human breast cells following UV-irradiation indicating a conserved eukaryotic damage response. Moreover, P-CTD cleavage in breast epithelial cells was BRCA1-dependent since damage-induced P-CTD cleavage was only observed in the mutant BRCA1 cell line HCC1937 following ectopic expression of wild type BRCA1. Finally, BRCA1, SPT5 and hyperphosphorylated RPB1 form a complex that was rapidly degraded following MMS treatment in wild type but not BRCA1 mutant breast cells. These results extend the mechanistic links between BRCA1 and transcriptional consequences in response to DNA damage and suggest an important role for RNAPII P-CTD cleavage in BRCA1-mediated cancer suppression

    Full Factorial Analysis of Mammalian and Avian Influenza Polymerase Subunits Suggests a Role of an Efficient Polymerase for Virus Adaptation

    Get PDF
    Amongst all the internal gene segments (PB2. PB1, PA, NP, M and NS), the avian PB1 segment is the only one which was reassorted into the human H2N2 and H3N2 pandemic strains. This suggests that the reassortment of polymerase subunit genes between mammalian and avian influenza viruses might play roles for interspecies transmission. To test this hypothesis, we tested the compatibility between PB2, PB1, PA and NP derived from a H5N1 virus and a mammalian H1N1 virus. All 16 possible combinations of avian-mammalian chimeric viral ribonucleoproteins (vRNPs) were characterized. We showed that recombinant vRNPs with a mammalian PB2 and an avian PB1 had the strongest polymerase activities in human cells at all studied temperature. In addition, viruses with this specific PB2-PB1 combination could grow efficiently in cell cultures, especially at a high incubation temperature. These viruses were potent inducers of proinflammatory cytokines and chemokines in primary human macrophages and pneumocytes. Viruses with this specific PB2-PB1 combination were also found to be more capable to generate adaptive mutations under a new selection pressure. These results suggested that the viral polymerase activity might be relevant for the genesis of influenza viruses of human health concern

    Weaned age variation in the Virunga mountain gorillas (Gorilla beringei beringei)

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00265-016-2066-6Weaning marks an important milestone during life history in mammals indicating nutritional independence from the mother. Age at weaning is a key measure of maternal investment and care, affecting female reproductive rates, offspring survival and ultimately the viability of a population. Factors explaining weaned age variation in the endangered mountain gorilla are not yet well understood. This study investigated the impact of group size, group type (one-male versus multi-male), offspring sex, as well as maternal age, rank, and parity on weaned age variation in the Virunga mountain gorilla population. The status of nutritional independence was established in 69 offspring using long-term suckling observations. A Cox-regression with mixed effects was applied to model weaned age and its relationship with covariates. Findings indicate that offspring in one-male groups are more likely to be weaned earlier than offspring in multi-male groups, which may reflect a female reproductive strategy to reduce higher risk of infanticide in one-male groups. Inferior milk production capacity and conflicting resource allocation between their own and offspring growth may explain later weaning in primiparous mothers compared to multiparous mothers. Sex-biased weaned age related to maternal condition defined by parity, rank, and maternal age will be discussed in the light of the Trivers-Willard hypothesis. Long-term demographic records revealed no disadvantage of early weaning for mother or offspring. Population growth and two peaks in weaned age within the Virunga population encourage future studies on the potential impact of bamboo shoots as a weaning food and other environmental factors on weaning

    The Flux-Line Lattice in Superconductors

    Full text link
    Magnetic flux can penetrate a type-II superconductor in form of Abrikosov vortices. These tend to arrange in a triangular flux-line lattice (FLL) which is more or less perturbed by material inhomogeneities that pin the flux lines, and in high-TcT_c supercon- ductors (HTSC's) also by thermal fluctuations. Many properties of the FLL are well described by the phenomenological Ginzburg-Landau theory or by the electromagnetic London theory, which treats the vortex core as a singularity. In Nb alloys and HTSC's the FLL is very soft mainly because of the large magnetic penetration depth: The shear modulus of the FLL is thus small and the tilt modulus is dispersive and becomes very small for short distortion wavelength. This softness of the FLL is enhanced further by the pronounced anisotropy and layered structure of HTSC's, which strongly increases the penetration depth for currents along the c-axis of these uniaxial crystals and may even cause a decoupling of two-dimensional vortex lattices in the Cu-O layers. Thermal fluctuations and softening may melt the FLL and cause thermally activated depinning of the flux lines or of the 2D pancake vortices in the layers. Various phase transitions are predicted for the FLL in layered HTSC's. The linear and nonlinear magnetic response of HTSC's gives rise to interesting effects which strongly depend on the geometry of the experiment.Comment: Review paper for Rep.Prog.Phys., 124 narrow pages. The 30 figures do not exist as postscript file
    corecore